145 research outputs found

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    Insights into Platypus Population Structure and History from Whole-Genome Sequencing

    Get PDF
    The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10−9/bp/generation (95% CI 4.1 × 10−9–1.2 × 10−8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.We thank the High-Throughput Genomics Group at the Wellcome Centre for Human Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z) for the generation of sequencing data. This work was supported by a Wellcome Trust Core Award (090532/Z/09/Z) to P.D. and by a University of Sydney StartUp Research grant to J.G

    MinION Analysis and Reference Consortium: Phase 1 data release and analysis

    Get PDF
    The advent of a miniaturized DNA sequencing device with a high-throughput contextual sequencing capability embodies the next generation of large scale sequencing tools. The MinION™ Access Programme (MAP) was initiated by Oxford Nanopore Technologies™ in April 2014, giving public access to their USB-attached miniature sequencing device. The MinION Analysis and Reference Consortium (MARC) was formed by a subset of MAP participants, with the aim of evaluating and providing standard protocols and reference data to the community. Envisaged as a multi-phased project, this study provides the global community with the Phase 1 data from MARC, where the reproducibility of the performance of the MinION was evaluated at multiple sites. Five laboratories on two continents generated data using a control strain of Escherichia coli K-12, preparing and sequencing samples according to a revised ONT protocol. Here, we provide the details of the protocol used, along with a preliminary analysis of the characteristics of typical runs including the consistency, rate, volume and quality of data produced. Further analysis of the Phase 1 data presented here, and additional experiments in Phase 2 of E. coli from MARC are already underway to identify ways to improve and enhance MinION performance

    Full-genome next-generation sequencing of hepatitis C virus to assess the accuracy of genotyping by the commercial assay LiPA and the prevalence of resistance-associated substitutions in a Belgian cohort

    Get PDF
    Funding Information: This work and KTC were supported by grants from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO) ( G069214 , G0B2317N , 1S38819N ). LC acknowledges FWO travel grant for a research visit at University of Oxford ( V431117N ). The authors thank the staff in Oxford in their support of the laboratory work and the donation of the probes used for enrichment of HCV. Publisher Copyright: © 2022 Elsevier B.V.Background: Although most currently used regimens for Hepatitis C virus (HCV) infections can be initiated without prior knowledge of genotype and subtype, genotyping is still useful to identify patients who might benefit from a personalized treatment due to resistance to direct-acting antivirals (DAA). Objectives: To assess the utility of full-genome next-generation sequencing (FG-NGS) for HCV genotyping. Study design: 138 HCV plasma samples previously genotyped by VERSANT HCV Genotype Assay (LiPA) were subjected to FG-NGS and phylogenetically genotyped Genome Detective. Consensuses were analysed by HCV-GLUE for resistance-associated substitutions (RASs) and their impact on treatment response was investigated. Results: 102/138 (73.9%) samples were sequenced to a genome coverage and depth of >90% of the HCV open reading frame covered by >100 reads/site. Concordant genotype and subtype results were assigned in 97.1% and 79.4% of samples, respectively. FG-NGS resolved the subtype of 13.7% samples that had ambiguous calls by LiPA and identified one dual infection and one recombinant strain. At least one RAS was found for the HCV genes NS3, NS5A, and NS5B in 2.91%, 36.98% and 27.3% samples, respectively. Irrespective of the observed RAS, all patients responded well to DAA treatment, except for HCV1b-infected patients treated with Zepatier (33.3% failure rate (5/15)). Conclusion: While LiPA and FG-NGS showed overall good concordance, FG-NGS improved specificity for subtypes, recombinant and mixed infections. FG-NGS enabled the detection of RAS, but its predictive value for treatment outcome in DAA-naïve patients remains uncertain. With additional refinements, FG-NGS may be the way forward for HCV genotyping.publishersversionpublishe

    Short and long-read genome sequencing methodologies for somatic variant detection; genomic analysis of a patient with diffuse large B-cell lymphoma

    Get PDF
    Recent advances in throughput and accuracy mean that the Oxford Nanopore Technologies PromethiON platform is a now a viable solution for genome sequencing. Much of the validation of bioinformatic tools for this long-read data has focussed on calling germline variants (including structural variants). Somatic variants are outnumbered many-fold by germline variants and their detection is further complicated by the effects of tumour purity/subclonality. Here, we evaluate the extent to which Nanopore sequencing enables detection and analysis of somatic variation. We do this through sequencing tumour and germline genomes for a patient with diffuse B-cell lymphoma and comparing results with 150 bp short-read sequencing of the same samples. Calling germline single nucleotide variants (SNVs) from specific chromosomes of the long-read data achieved good specificity and sensitivity. However, results of somatic SNV calling highlight the need for the development of specialised joint calling algorithms. We find the comparative genome-wide performance of different tools varies significantly between structural variant types, and suggest long reads are especially advantageous for calling large somatic deletions and duplications. Finally, we highlight the utility of long reads for phasing clinically relevant variants, confirming that a somatic 1.6 Mb deletion and a p.(Arg249Met) mutation involving TP53 are oriented in trans

    People of the British Isles: preliminary analysis of genotypes and surnames in a UK control population

    Get PDF
    There is a great deal of interest in fine scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to play a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. Here we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK control population that can be used as a resource by the research community as well as providing fine scale genetic information on the British population. So far, some 4,000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3,865 samples that have been geocoded indicates that 75% have a mean distance between grandparental places of birth of 37.3km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1,057 samples demonstrates the value of these samples for investigating fine scale population structure within the UK, and shows how this can be enhanced by the use of surnames

    Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus

    Get PDF
    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. Here we use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals who were chronically infected with HCV, predominantly genotype 3. We show that both alleles of genes encoding human leukocyte antigen molecules and genes encoding components of the interferon lambda innate immune system drive viral polymorphism. Additionally, we show that IFNL4 genotypes determine HCV viral load through a mechanism dependent on a specific amino acid residue in the HCV NS5A protein. These findings highlight the interplay between the innate immune system and the viral genome in HCV control

    MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven

    Get PDF
    To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets

    Targeted single-cell RNA sequencing of transcription factors facilitates biological insights from human cell experimental models

    Get PDF
    Single-cell RNA sequencing (scRNA-seq) is a widely used method for identifying cell types and trajectories in biologically heterogeneous samples, but it is limited in its detection and quantification of lowly expressed genes. This results in missing important biological signals, such as the expression of key transcription factors (TFs) driving cellular differentiation. We show that targeted sequencing of ∼1000 TFs (scCapture-seq) in iPSC-derived neuronal cultures greatly improves the biological information garnered from scRNA-seq. Increased TF resolution enhanced cell type identification, developmental trajectories, and gene regulatory networks. This allowed us to resolve differences among neuronal populations, which were generated in two different laboratories using the same differentiation protocol. ScCapture-seq improved TF-gene regulatory network inference and thus identified divergent patterns of neurogenesis into either excitatory cortical neurons or inhibitory interneurons. Furthermore, scCapture-seq revealed a role for of retinoic acid signaling in the developmental divergence between these different neuronal populations. Our results show that TF targeting improves the characterization of human cellular models and allows identification of the essential differences between cellular populations, which would otherwise be missed in traditional scRNA-seq. scCapture-seq TF targeting represents a cost-effective enhancement of scRNA-seq, which could be broadly applied to improve scRNA-seq resolution
    corecore